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ABSTRACT

The behavior of a shallow arch and a thin ring ' .der a dynamic
pulse loading is studied for a wide range of geometric and load
parameters. The nonlinear dynamic response and static load
deflection characteristics of the systems are related and employed
to define dynamic elastic snapping and dynamic elastic buckling.
When such a relationship cannot be established, the mechanism of
dynamic elastic-plastic buckling is introduced. Critical dynamic
load criteria are specified, and critical dynamic load data are
developed as a function of structural geometry and load duration.
Finally, a classification scherne for dynamic load problems is

suggested.
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NOMENCLATURE

area nf the arch crogs-section

generalized coordinate describing nondimensional transverse
displacement of the arch

generalized coordinate deszribing circumferential displacement of
the ring in mth nonsymmetric mode

Young's modulus

ratio of initial height of arch to radius of gyration of arch
cross-section

(pR/Eh), nondimensional pressure parameter in the ring problem

critical value of g required for static buckling

critical value of g required for dynamic buckling
thickness of the ring or arch

T

f d q &7, impulse parameter in arch problem
o

-
[ d g d7, impulse parameter in ring problem
0

radius of gyration of the arch cross-section
span of the arch

pressure load

(p/EAk3 XL/~ )4, nondimensicnal pressure load in arch problem
amplitude of nondimensional pressure load acting upon the arch
(see Eq. 1)

critical value of q; required to produce snapping under a static
pressure load

critical value of 9 required for snapping under a dynamic pressure
load

anna nf rha
g ol W

generalized coordinate describing nondimensional radial displace-~
raepnt in axisymmetric mode

iy~




r_(r)

v(0,7)

W(g"" )
w(6,T)

L(6,7)
(€, T)

generalized coordinate describing nondimensional radial
displacement of the ring in mth nonsymmetric mode

time

circumferential displacement of the ring (see Figure 1b)

transverse position of the middle surface of the arch (see Figure 1a)
radial displacement of the ring (see Figure 1b}

Cartesian coordinate along span of the arch (see Figure {a)

w(6, )/ R, nondimensional radial displacement uf the ring

w(&, )/ k, nondimensional transverse position of the middle surface
of the axch

angular coordinate for the ring {see Figure 1b)
x/ L nondimensional Cartesian coordinate for the arch

mass density
yield stress

/2

(1/R.)(E/ps)1 t, nondimensional time in the ring problem

Iz t, nondimensional time in the arch problem

(v/ L(EAK?/p_h)!
dimensionless period of the axisymmetric mode of the ring

dimensionless period of the fundamental symmetric mode of the
arch

nondimensional duration of the pressure load

v(6, T}/ R, nondimensional circumferential displacement of the ring
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1, INTRODUCTION

Certain types of elastic structure can exhibit instability when they are
subjected to static loads of sufficient magnitude. Since this phenomenon can
coincide with excessive deformation or with severe degradation of structural
stiffness, it is of considerable practical importance in structural design. As
a result, a substantial amount of literature on the subject has been published
(see References 1-4 for extensive bibliographies). Primarily these publica~
tions deal with determination of the critical levels of static load ut which
instability is exhibited., Such loads may be referred to as critical instability
loads. If they also correspond to a significant d2gradatior. in the capability

of the structure, they may be termed critical structural loads.

This report is concerned with a related problem: namely, the behavior of
such structures when the external loading is time-dependent. In particular,
we wish to determine critical levels of dynamic load for '"typical' stractural
systems and to see how these dynamic loads coinpare with the correspon&ing

critical static loads.

The selection of the typical structural systems is based upon elastic stability
theory. Since a major partof this theory deals with perfect elastic structures
thateither '"snap' or ''buckle' under staticload (these phenomena are reviewed
in the following section), it was decided to select a simple exan_ple of each of
these categories. The selected systems are the shallow arch (see gure la)
and the thin circular ring (see Figure lb), both structures being subject to an

external comprescsive pressure load.

The first problem represents a ''snapping' system, while the second repre-

sents a "buckling’ system. The axch is assumed to be sirmply suppozted, to

We consider a structurc to be perfect if the critical static load can be obtained
as an eigenvalue of the cunventional equilibrium path bifurcation analysis.

- . © e ame i s am—
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have an initial sinusoidal shape, and to be of uniform thickness; the circular
ring is also assumed to be of uniform thickness and of rectangular cross-

i section, The material of the two structures is assumed to be linearly
elastic.

-

The time history of the external pressure loading was selected to be as shown
in Figure 2, i.e., the load is applied instantaneously and maintained at a2 con-
stant level for a specified interval of ttme 1,. The duration of this loading
is allowed to vary between the limits of zero (impulsive load) and infinity
3 (step load). The spatial distribution of the load is assumed to be sinusoidal
in the case of the arch and uniform in the case of the ring.

The critical values of the dynamic load are defined upon the basis of the non-
linear structural response. These loads are determined over the specified
range of pulse loads for a wide range of the arch and ring geometric param-

eters. Finally, the critical dynamic loads are compared with the correspond-~
ing critical static loads.
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2., STATIC LOAD PROBLEM

Before embarking upon the determination of the dynamic response of the two
systems, we will first briefly review the analysis and res: its of the corre-
sponding static load problem. This review will enabie us o illustrate the
behavior of suapping and buckling structures and will provide the critical
static loads required for comparison with the corresponding critical dynamic
load results. This analytical approach consists of determining the equilibrium
states of the two systemns and then examining the stability of these states with
respect to infiritesimal perturbations. The stability analysis yields a critical
instability load, which is defined as the lowest load at which the initial equilib-
rium path {i.e., the path that emanates from the unloaded state) becomes
unstable. Examination of the post~critical behavior of the systems then indi-
cates whethex the critical instability loads can be considered as critical loads

for the structure.
2.1 SHALLOW ARCH

In the example of the shallow arch, the external pressure load is
Q=9 sin § (1)

Following References 5 and 6, the transverse position n(£) of the middle sur-

face of the arch is represented by

nWE) = e sing + a,y sin £+ a, sin 2¢ (2)

where the term e sin ¢ describes the initial shape of the arch (see Nomencla-
ture for definiiions). The gencralized coordinates ay and a, denote the ampli~
tude of the displacement in the fundamental symmetric and nonsymmetric
modes, respectively. The nonlinear algebraic equations governing the equilib-
rium states of the system were solved in References 5 and 7. It was found
that the equilibrium states involve only the symmetric mode 2, sin § for

0<es [f22,i.e., the generalized coordinate a, is identically equal tv zero

-6-




. in this range; whereas, for e > ,/22, distinct symmetric and nonsymmetric
: equilibrium states co-exist for certain ranges of the load parameter q. Typi-

cal static load deflection curves for the ranges 2< e< /22 and e >,/ 22 are

P

illustrated in Figures 3a and 3b, respectively. The solid curves in these
figures describe the symmetric mode equilibrium states, while the dashed

line in Figure 3b represents the symmetric mode component of the nonsym-

el
Eyomopp oS Rt 1 8 7,

metric equilibrium states (i.e., states with a; £0, a, £ 0\

We consider compressive pressure loads g = 0, and for convenience we limit

our considerations to the range 0 < e < 20. For 0 e =< 2, itis found that the
static deflection is a single-valued function of the load and that the associated
equilibrium states are always stable, For2<es=s \/_2_2_, the arch becomes
unstable “rith respect to symmetric mode perturbations at the extremum of
the load deflection curve (point A in Figure 3a). Under such conditions the
arch snaps through and vibrates about a large deflection equilibrium state
(point D in Figure 3a); these large deflection states are stable and are
referred to as snapped equilibrium states (the branch CDE of each curve
shown in Figure 3 is the snapped branch of the load deflection curve). The
phenomenon in this case involves only the symmetric mode and is referred to
as "snapping. " The critical value of the load parameter at which instability

occurs in this range is

/4

2 ,3
- _ et (e -4
g, = ( )

3
1 6/3 &)

2<es,/22

For e >/ 22, the arch becomes unstable with respect t

bations in the nonsymmetric mode 2t the intersection cf the symmetric anu

o

infinitesimal pertur-

nonsymretric equilibrium states (i.e., at the bifurcation point A in ¥igure 3b).
Again the arch snaps through and vibrates about a large deflection equilibrium
state {point D in Figure 3b). Since this phenomenon involves a bifurcation

point and both the symmetric and nonsymmetric modes of the system, it is
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GENERALIZED COORDINATE, g,
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Figure 3., Static Load Deflection Curves for Shallow Arch
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referred to as "snap-buckling.'" The critical value of the load parameter for

instability in this range is

T, = e +3(e” - 1612 (4)

e> ,/ 22

Since the critical instability loads of Eqs. 3 and 4 also correspond to the
occurrence of large deflections, they are considered to be the critical static

loads for the system,
2.2 CIRCULAR RING
In the ring example the external pressure lcad is uniform. The radial and

angular displacement components of the middle surface of the ring (see

Figure 1b) are described by

&ie)

T, + r  sin mé {5a)

v(e)

¢, cos m8 (m = 2,3,4, ....) (5b)

where r denotes the axisymmetric component of the radial displacement

and r and Cm describe the nonsymmetric component of the displacement.

Eqgs. 5a and 5b satisfy the condition that the displacement be continuous and

periodic around the circumference of the ring. The generalized coordinates
Ty T and C,, are governed by a set of coupled nonlinear 2lgebraic equa-
tions. The solution of these equations determines the static load deflection

characteristics of the ring.

An example of these characteristics is shown in Figures 4a and 4b, which
respectively illustrate the axisymmetric and nonsymmetric components of

the radial displacement. The load deflection curves of the ring are seen tc
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Figure 4. Static Load Deflection
Curves for Circular Ring
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exhibit a bifurcation point at a specific level of the pressure load (point A in
Figures 4a and 4b). For loads that are lower than this level, the equilibrium
states are axisymmetric (i.e., r, $0, r = o, C = 0); whereas, for loads
that are higher than the bifurcation load, both axisymmetric equilibrium states
and nonsymmetric equilibrium states (i.e. r  # 0, r £ 0, S # 0) can
co-exist. An infinitesimal stability analysis of the axisymmetric equilibrium
states (path OC in Figure 4a) reveals that they become unstable with respect
to nonsymmetric perturbations at the appropriate bifurcation points. The
most critical case is associated with the fundamental nonsymmetric mode of
deformation (i.e., for m = 2). The bifurcation point and loss of stability for

this case ocrur at the following value of the load parameter g:

g =3 (%) (©)

where h and R denote the thickness and radius of the ring, respectively.

For g > g, the ring adopts a stable nonsymmetric equilibrium state {branch AB
in Figures 4a and 4b)., The phenomenon ir this case involves a bifurcation
point but does not involve snapping. It is referred to as "buckling!' and the
post-critical stable nonsymmetric equilibrium states are referred to as post-
buckled equilibrium states. It will be noted in this case that the appearance

of instability corresponds to a significant loss in the stiffness of the struc-~
ture (see Figure 4). Thus, the critical instability load given by Eq. 6 can be

treated as the critical static load for the ring structure.

2,3 FINAL REMARK

The essential difference between the buckling and snapping systems lies in
the existence or non-existence of stable equilibrium states adjacent to the
initial equilibrium path for values of the load parameter slightly greater than
the critical instability load. If such states do not exist, the system snaps
with increase of load. If they do exist, the structure suffers a loss of stiff-

ness, the severity of this loss depending upon the particular buckling system.

-11-
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3. DYNAMIC LOAD PROBLEM

This section explores the behavior of the buckling and snapping systems when
they are subjected to selected dynamic loading. The response of either sys-
tem is determined by numerical integration of the governing nonlinear equa~
tions of motion.* The critical dynamic loads are directly defined upon the
basis of this response; the infinitesimal stability analysis is dispensed with

in this case, since a previous investigation by the «.thor (Reference 6) demon-
strated that the critical dynamic loads determined from infinmitesimal stability

ki
considerations are not necessarily of practical significance.

3.1 SHALLOW ARCH
The transverse position n(f, 7 ) of the arch is represented by Eq. 2 where the

eneralized coordinates a, and a, are now functions of time., The nonlinear
g 1 2

differential equations governing these generalized coordinates are of the form

2 -
d ay da.l 2
d-rz +y 3 twyapt Fl(al, a2)+ ql(-r) = 0 (7)

2

d“a2 daz 2

de +Y == tw,a, +a, FZ(al’aZ) = 0 (8)

where Y denotes a viscous damping coefficient. The constants wy and w5

are proportioral to the free vibration frequencies of the fundamental

“The partial differential equations governing the elastir' response of the two

systems are presented for reference in the Appendix; a detalied development
of these equations can be found in References 6 and 8,

“*This lack of significance arises because the growth of the unstable motions
can be rapidly suppressed by nonlinear terms that are typically neglected in an
infinitesimal stability analysis. Thus, unstable infinitesimal motions produced ’
by a dynamic loading do not necessarily develop into large amglitude responses.
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symmetric and nonsymmetric modes, respectively; the terms Fl(al’ a.z)

and F,(a;,a,) are nonlinear coupling terms.

It will be noted that the symmetric mode is directly excited by the external
load (see the inhomogeneous term ql(r) in Eq, 7). The nonsymmetric mode
response is parametrically excited by the response in the symmetric mode
by means of the term FZ(al' :.2) in Eq. 3. Again we consider the behavior of
the arch for q 2 0 and2 < e = 20. The response to a given time-dependent
pressure load is obtained by numerical integration of Eqs. 7 and 8, thke inte-
gration scheme employed being a variable step size, fifth order, predictor-

corrector method (Reference 9).

The procedure followed consists of fixing the load duration and obtaining the
response at successively higher values of the load parameter. For mostof the
range of interest, i.e., the range q 2 0 and2 < e <20, the maximum level of this
response is found to exhibitadistinct jump ata particular level of the load (an
example of this behavior is shown inFigure 5 for the case ofa step loading, i. 2.,
Tq = ®). The appearance of this jump corresponds to the developmentofa
response that encompasses a snapped equilibrium state of the system* (see

Figure5). This response is consideredas constituting dynamic elastic snap-

ping. The criticaldynamic load for snapping is thenthe lowzstload required to
produce such a response. This criterion can be applied over the comylete range
of pulse loads (i. e.; betweenthe impulse and step load limits)for those archgeom-
etries that possess snapped equilibrium states for qy 2 0.

If the system does not possess a snapped equilibrium state for q; = 0, it may

be necessary to introduce another criterion in order to define a critical impul-
sive load. A possible procedure for employment in such a case would consist

of imposing a maximum stress limitation and basing the critical load upon

this criterion. This is the procedure that is adopted later for the problem of

“This equilibrium state can be the snapped equilibrium state corresponding
to the specified load level q, or the snapped equilibrium state corresponding
to q; = 0. The first case is appropriate for long duration loads, while the
second case is appropriate for short duration impulsive loads.
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the circular ring subjected to an impulsive load, However, since the initial

criterion suffices for most of the specified range of arch geoinetries, we

will defer discussion of alternate criteria until later.

Employing the initial criterion, we obtain critical dynamic loads for a variety
of arch geometries and load conditions.** An example of the variation of the
critical load with arch geometry is shown in Figure 6 for the case of a step
load and zero damping. The results are presented in terms of the critical
load ratio q:;/Eil and the geometric pzirameter e. Examining this figure, we
note that the critical dynamic loads q; are less thar the corresponding criti-
cal static loads El for the range 2 < e < 8.6, and that they are greater than
the critical static loads for e >8.6. These latter "superstatic' step loads
are reduced to the level of the critical static loads by the presence of small
damping (Reference 6); on the other hand, the '"substatic' loads are increased

by the presence of damping.

The response of the arch under a supercritical step load is found to be
primarily in the symmetric mode al(T) sin § for the range 2<e<4.5. An
example of this type of response is shown in Figure 7. The behavior of the
arch in this range is essentially a single degree of ireedom phenomenon and
is adequately described by the symmetric mode response. This type of
dynamic snapping is referred to as ''direct" snapping (Reference 6). For

e > 4.5, the mechanism of snapping involves a complicated interaction between
the symmetric and nonsymmetric mode response. This interaction consists
of the parametric excitation of the nonsymmetric mode by the initial response
in the symmetric mode followed by the interaction of this excited response
back with the symmetric mode. An exa.~ple of this type of response is shown
in Figure 8. From the figure we see that the nonsymmetric mode response

grows under the parametric excitation supplied by the symmetric mode. and,

“The criterion based upon a response encompassing a snapped equilibrium
state can be applied for e =2 4. At lower values of e the specified type of arch
does not possess a snapped equilibrium state at q; = 0.

"An equivalent jump criterion has been employed in References 10-13.

-15-~
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unlike the direct snapping mechanism, the arch vibrates for a number of
cycles prior to snapping. The phenomenon in this case is referred to as

Mindirect! or "parametrically induced' snapping (Reference 6)."<

The important difference between this mechanism and the direct snapping

phenomenon is the essential role played by the nonsymmetric mode response.

The effect of load duration on the critical load level is illustrated in Figure 9
for two arch geometries. These geometries (e = 4 and e = 7) were selected
to repregent cases where the snapping phenomenon is controlled by the direct
and indirect snapping mechanisms, resnectively. The results are presented
in terms of the critical load ratio q::;/El and the ratio Td/Tl, where LB
denotes the perioc of the fundamental symmetric mode. We note that the
general features of the two critical load curves are the same: namely, an
increase in critical load ratio with decrease in the load duration ratio. The
difference in the detailed behavior of the lcad curves is due to the different
mechanisms of snapping. This detailed behavior depends quite strongly upon
the particular arch geometry.

When the ratio Td'ITl becomes sufficiently small, the impulse imparted to
the structure rather than the load level becomes the most significant load
parameter. The critical values of the impulse parameter I are shown as
functions of Td/Tl in the inset of Figure 9. The variation of the critical

impulse parameter with the geometric parameter is shown in Figure 10 for

the limiting case of T4/7) — J.

“The need to satisfy the conditions of parametric resonance as a prerequisite
for the occurrence of this mechanism has been employed (Reference 6) to
explain the character of the critical step load curves for e > 4.5,

-19.
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The almost linear character of this variation is related to two facts:

a. The minimum amount of kinetic energy input required to surmount
the potential "barrier'" between the unloaded and snapped equilib-
rium states of the arch is almost proportional to the square of the
geometric parameter e,

b. Satisfaction of the conditions of parametric resonance enables the
system to pass over into the snapped state at such energy input
levels.

It should be noted in passing that the linear variation does not persist at
somewhat higher values of e, since the parametric resonance conditions are
not satisfied at the foregoing minimum required impulse levels. Thus,
impulse levels higher than this minimum are required to produce snapping of

such arch geometries,
3.2 CIRCULAR RING

The radial and circumferential displacement components of the ring are again
represented by Eqs. 5a and 5b, where the generalized coordinates are now
treated as functions of time. The coordinates are governed by a set of coupled
nonlinear ordinary differential equations whose form is similar to Eqs. 7

and 8, The axisymmetric mode response ro(r) is directly excited by the
loading. The nonsymmetric mode response is parametrically excited by the
axisymmetric response. The bekavior of the ring is determined by numerical
integration of the nonlinear equations of motion. The numerical method and
procedure followed are similar to those employed in the problem of the

shallow arch.

An example of the variation (with load level) of the maximum radial displace-~
ment in a nonsymmetric mode is presented in Figure 11 for the case of a step
loading (74 = @), Although the results are presented for a specific nonsym-
metric mode (m = 5), the important fea%ures are representative of the results

obta.ned for other nonsymimetric mcdes.” From the figure we see that the

“A detailed study of the nonlinear response of a circular ring under a step
pressure loading can be found in Reference 8,
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response level exhibits a rapid growth above a particular value of the load,
The appearance of this growth corresponds to the development of a response
that encompasses the corresponding post-buckled equilibriun state of the
ring (see Figure 11). Such a response is considered as constituting dynamic

elastic buckling. The critical load for dynamic elastic buckling is then the

lowest load required to produce this type of response. This criterion is
employed to determine the critical values of the step load for the range

10 <R/h < 1300. These critical step loads are found to be associated with
the fundamental nonsymmetric mode. Their levels are essentially identical
to the corresponding critical static Luckling loads. Thus,

-

[

s = 4(3) ()

An example of the response of the ring to a supercritical step load is shown
in Figure 12. The important interaction between the modes excited under
this loading is the parametric excitation of the nonsyrametric mode by the

response in the axisymmetric mode.

We find that this interacticn is the important response mechanism when the
ring is subjected to an impulsive pressure load (i.e., 'rd/ Ty << 1, where o
denotes the period of the axisymmetric mode). However, in this case the
maximum response level does not exhibit any distinctive regions of rapid
growth that would serve to distinguish a critical value of the dynamic load.

An examnple of this type of behavior is illustrated in Figure 13, The variation
of the response level in this figure should be compared with that shown in

Figures 5 and 11.

In the absence of such distinguishing features in the elastic response problem,
we introduce the idea of plastic deformation and hypothesize the following
"failure' mechanism: namely that the ring may be considered to have "failed"

if the bending stresses developed in the response result in the formation of
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plastic hinges. However, rather than analyze the extremely complicated
elastic-plastic response problem, we take a conservative approach and con-
sider that the system is critical when the maximum elastic stress just equals
the yield stress of the material. Thus, the critical impulsive load is the
lowest impulsive load required to produce such a stress level. We will refer

to this phenomenon as dynamic elastic-plastic buckling.

An example of the critical impulse levels determined with the use of this
definition is shown in Figure 14. The results are presented in terms of the
impulse parameter J and the geometric parameter R/h. These results are
obtained for the case of uy/E equal to 0. 004, where Ty denotes the yield
stress and £ represents Yo:ng's modulus of the material, The mcde num-
bers m of the associated critical nonsymmetric modes are also presented in
Figure 14. It will be noted that, unlike the step load problem, the critical
response under impulsive loads involves the higher nonsymmetric modes of

the system.

Finally, we illustrate the effect of load duration on critical load levels in
Figure 15. The results are obtained for R/h equal to 129 and are presented
in terms of the ratios g*/E and Td/ 7o+ The critical load curve exhibits the
same general feature that was noted .n the case of the arch: anincrease in
critical load level with decrease in load duration. However, the curve in
this case is composed of two distinct branches, these branches corresponding

to the phenomena of dynamic elastic and dynamic elastiz-plastic buckling,
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4, COMPARISON OF CRITICAL LOADS

In the preceding section we have described the behavior of our two sample
systems under the specified type of dynamic loading. We will now see how
the critical dynamic loads compare with the corresponding critical static
loads. This comparison may best be made by examining Figures 9 and 15,
These figures illusirate the dependence of the ratic of the critical dynamic
and static loads upon the ratiog r d/ T, and T d/ 7, for the shallow arch and
circular ring. In both cases wn see that the most critical dynamic load con-
ditions (i.e., conditions for the lowest value of the critical load ratio) corre-
spond to the case of a step load. However, there is an important difference
between the two systems: the minimum value of the critical load ratio is
appreciably less than unity in the case of the arci (about 0. 78 for the cases

shown in Figure 9), whereas it is equalto unity in the case of the ring.

Thus, particular arch geometries can exhibit dynamic weakening (i.e., col-
lapse at dynamic loads that are lower than the corresponding critical static
loads) if the load duration is sufficiently long. As a corollary to this we see
that the design of such systems against dynamic loads, if based upon the
critical static load, would prove to be unconservative. The load duration
required to produce such dynamic weakening, as measured by the ratio Td/ T
depends strongly upon the type of mechanism controlling the snapping process.
This may be seen by comparing the two curves shown in Figure 9. There we
see that the critical load ratios are less than unity if Td/-r >0.6 in the case
of direct snapping, andif -rd/ T, > 2. 8 for the case of indirect snapping. * As the
ratios Td/Tl and Td/ T, are reduced, the critical load ratios increase and the
systems are able to withstand dynamic pressure loads that are substantially in
excess of the critical static pressures. Thus, static design in such cases would

be highly conservative.

“We should also note ihat some “indirect" snapping geometries do not exhibit
dynamic weakening (see discussion of shallow arch problem in Section 3).
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5. COMPARISON WITH RELATED WORK

It is of interest to compare the present work with related studies in this field,
This comparison will illustrate the diversity of problems arising when the
external loading is time-dependent. * Let us first consider buckling systems.
In this category we have studies of the buckling of elasti: columns under
axial impact loads (References 19-22), of the response of plates to in-plane
compressive ioads (Reference 29), and of the buckling of rings and cylinders

under external pressure loads (References 30-33},

The studies of the column problem can be divided roughly into three
categories:

a. Analyses that include the effect of axial inertial forces and con-
sider the propagaticn of the loading pulse in the column
(References 19-22)

b. Investigations that neglect the axial inertial forces and determine
the modes that are most highly excited by intense impulsive loads
(References 23-25)

c. Studies that neglect the axial inertial forces and determine the
response of initially imperfect structures to the specified dynamic
load (References 24, 26-28}

With the exception of Reference 28, the studies in Categories (b) and (c) are
based upon linear equations of motion, as are the earlier investigations in
the first category (References 19 and 20). The investigation of the piate
problem (Reference 29) also employs linear equations and falls within the
third category of analysis. References 30 and 31 study the response of

cylindrical shells to external pressure loads and are based upon nonlinear

“We limi ourselves to the pulse type of time-dependent load considered in the
present paper. Studies of the dynamu. response produced by specified motion
of structural boundaries or by loads that increase linearly with time can be
found in References 14-17, while a comprehensive discussion of dynamic
instability under periodic loading will be found in Reference 18.
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aquations of motion., References 32 and 33 are linear analyses and are
concerned with the determination of the modes {of ar infinitely long cylinder
or ring) which are most highly excited by intense impulsive pressure load.

These latter studies are similar to those in the second category of analysis

mentioned previously.

Of the various studies described above, the works of References 30 and 31 are
most similar to the buckling part of the present study. However, they are of
considerably less scope and only one of the investigations (Reference 30)
specifically considers the question of critical dynamic load.” The other
investigations treat particular aspects of the dynamic load problem (stress
wave propagation, mode excitation, imperfect system response, etc.). The
stress wave studies are appropriate to problems where the load duration is
comparable to the time required for a stress wave to traverse the system.,

In the present study, stress wave effects are not expected to be significant
since the transit path simply consists of the thickness of the structure. The
mode excitation stucrlies have been used to explain the character of the post-
buckled deformation shapes produced by impulsive load. However, they have
a disadvantage in that they do not treat the practically important question of
critical load determination. The studies of the dynamic response of initially
imperfect structures can be considered as the dynamic load analogue of the
deformation analyses performpd for initially imperfect siructures subject to
the corresponding static loads. " As suchthese studies can be considered as
being complementary to the type of anal: sis carried out in the present

investigation.

,_\ef,“ ence 30 introduces a safe load based upon the total stress at any

point in the structure not exceeding the ultimate strength of tne materal.

““TlLe analysis of a perfect system subject to a static lcad generally results
in a stability or eigenvalue problem; however, if the system is considered to
be initially imperfect the znalysis reduces to a deformation study (For example,
compare the analysis of perfectly straight and initially curved struts subject

to axial load).
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Now let us consider the investigations that treat snapping systems. In this
category we have the snapping of shallow domes, cones, curved panels, and
shallow arches under external pressure loads (References 10-13, 34-40) and
the snapping of circular cylinders under dynamic axial load (References 41-43).
A combined load problem involving the snapping of axially loaded cylinders

under dynamic lateral pressure loads is treated in References 42 and 44.

With the exception of References 41 and 43, these studies are based upon non-
linear equations of motion and are primarily concerned with determining the
structural response to the specified dynamic loading. This response is then
employed to obtain the critical values of the dynamic load, the determination
of these loads being effected with the use of a '"jump'' criterion that is equiva-
lent to the response criterion employed in the present study of snapping sys-
tems.* These studies are clearly similar to the present analysis. However,
a large number of the previous investigations (see References 10-13, 34-38)
have been limited to the treatment of symmetric or axisymmetric types of
deformation. As a result of this limitation, such investigations do not treat
the indirect type of snapping phenomenon found to be important in the present
study. Thus, the resulting critical dynamic loads could prove to be unrealistic

for particular ranges of structural geometry,

A phenomenonological theory for the dynamic buckling of 2 circular cylinder
under axial impact load, including the effect of wave piopagation, is presented
in Reference 41. A linear analysis of mode excitation under dynamic axial

load is given in Reference 43,

Finally, mention should be made of two investigations that are concerned with
the use of simple models (Reference 45) and energy methods (Reference 46)

for the estimation of critical dynamic loads.

"In some cases where the structure is analyzed as a single degree of fireedom
system,an equivalent energy criterion has been employed (see References 10,
13, and 37).
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6. CONCLUDING REMARKS

This report has comprised a detailed study of the behavior under dynamic
load of two particularly simple structural systems. The response of these
systems was determined for wide ranges of the geometric and load param-
eters, and because of the simplicity of the systems it was possible in many
instances to relate this response to the corresponding static load deflection
characteristics of the structure. This relationship served as a basis for
defining dynamic elastic snapping and dynamic elastic buckling. When such
a relationship could not be established, the mechanism of dynamic elastic-
lastic buckling was introduced. The specification of the phenomena was
accompanied by the spz.ification of the corresponding critical load criteria.
Application of these criteria then led to the development of critical dynamic
load data. The critical dynamic load criteria differed among themselves,
and it was found that for some structural geomet..es different criteria had to
be employed, depending upon whether the loading was impulsive or of long

duration.

The different critical load criteria and their different application are inti~
mately associated with the static load deflection characteristics of the struc-
ture. This aspect of the dynamic load problem suggests the development of

a classification scheme for this type of problem. Such a scheme can be based
upon the three types of static load deflection characteristics shown in Figure 16.
The first two cases pertain to systems that exhibit snapping under a static
load; these cases are labelled S. 1 and S. 2; they can be referred to as snapping
systems. The distinction between them is based on their different behavior
under the dynamic load. Considering q 2 C, we see that the S. 1 system
exhibits dynamic elastic snapping throughout the complete range of pulse

loads Thus, a single critical dynamic load criterien can be applied to this
type of system. On the other hand, the S.2 system e:.hibits dynamic elastic
snapping for long duration loads and dynamic elastic plastic buckling for short

duration impulsive loads. Two different critical load criteria are required for
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application over the range of pulse loads. The wuird case shown in

Figure 16 corresponds to a system that exhibits buckling under a static load;
this system is labelled B and can be referred to as a buckling system. Under
a dynamic load it exhibits dynamic elastic buckling or dynamic elastic~plastic
buckling, depending upon whether the loading is of long or short duration.

Again, two different critical load criteria are required for the complete range
of pulse loads.

This type of classification scheme should be applicable to other types of
structural elements (e.g., domes, cylinders, columns) that are commonly
encouitered in elastic stability theory. Th=z scheme should aid in the analysis
of the behavior of these systems under dynamic loading. The nondimensional
critical load data presented in Figures 9 and 15 should also serve as a guide

in the design of elastic structures against this type of dynamic loading.
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APPENDIX

PARTIAL DIFFERENTIAL EQUATIONS OF MOTION

The partial differential equations governing the behavior of the shallow arch
and the circular ring are presented below for the purpose of reference. A

detailed development of these equations can be found in References 6 and 8.

Shallow Arch

The nondimensiona! form of this equation is written (see Nomenclature for

definitions) as

I
F N R O Y jf{a_)z _(d_ﬁ)"'] a
a;l d§4 2w agz ol F13 d£
2
an , 971
Yoo+ =5+ ql6T) = 0 (A-1)

Where M(£) denotes “he initial unstressed position of the arch,

n(g) = e sing
The integral that appears in the third term of Eq. A-1 describes the stretch-~
ing of the middle surface of the arch produced by the transverse displace-

ment. The term Y 91 /871 represents a viscous damping force, this term

being employed as a simple means cf including the effect of damping in the

The function n(¢,7) is described by

N(€,v) = e sinf + a,(v)sing + a {r) sin 2¢ (A2
1 = 2
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Substitution of this series intc Eq. A-1l leads to a pair of coupled nonlinear
equations governing the generalized coordinates al(r) and az(r).

Circular Ring

The deformation of the ring is based upon the assumptions of the Winkler

theory of curved beams. The partial differential equations governing the

radial displacement (8, 7) and the circumferential displacement (8, 7) of the
middle surface of the ring are

2 214 2
7L 3, 1 /h 3L 3"
+ Y24 S5 +2—3+¢
aTZ a7 IZ(R) 864 892
- 3y _ 3 9% - L2y _,
EOL1+3 ;]--a—.e-[eo(a +V) = q(l ae-‘,) (A-3)
2 [ ' aL | | aL
3cd ..._8 Qﬁ - - = - —_ ! -
2 06 EO<1 +39 (,)] * €c(ae+v> q(ae"" V) (A-4)
ar 3
and where € denotes the middle surface strain,
. 2 2
=du RYEL 19t
‘o "8 " 4*2(39‘4) *'2‘(39 H’) (A-5)

iga’n, a viscous damping term has been included in the equaticn as a simple

means of incorporating the effect of damping. The displacement components

are represented by the expressions

(6, 7) = ro(r) b rm(r) sin m6
vig,t) = cm(r) cos mb (A-6)
A-2
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Substitution of Eq. A-6 into Eqs. A-4 and A-5, followed by application of the
Galerkin method, leads to a set of ordinary differential equations governing

the generalized coordinates ro(-r). rm(T)’ and cm(-r).
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